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ABSTRACT

This paper presents the solutions obtained for various axisymmetric thermal convection flows in a rotating
annulus. Initially, a solution is obtained for a flow whose interior structure has been observed in detail, A
comparison reveals the similarity of the experimental and computed temperature fields and shows the
discrepancy to be independent of the computational resolution. On increasing the resolution, the Nusselt
number decreases and converges to a value close to that observed. For this particular flow the rotation
rate is zero and the flow consists of a direct meridional cell with a large stagnant interior. The associated
isotherms lie horizontally in the interior such that the vertical temperature gradient is constant.

Secondly, we present solutions of five flows with a rigid surface. These flows cover a wide range of values
of the external driving parameters so that physical processes vary from predominately viscous and con-
duction diffusion to free convection transports. Despite these differences, all five flows exhibit a similar
structure, i.e., the interior flows form direct (Hadley) cells with sidewall countercurrents and the zonal
flow reverses sign near the center of the fluid. Interpolation of the Nusselt number values yields a (AT7/Q)%5
dependency. Compared to the @7 dependency of free surface flows, the rigid surface system forms the
better transporting mechanism and is less inhibited by rotation.
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1. Introduction

This paper forms the second part of a study of axi-
symmetric thermal convection of a fluid contained in a
rotating annulus. In the experiments, water is con-
tained between two coaxial cylinders which rotate about
their axis. The cylinder walls are held at constant tem-
perature and for particular rotation rates symmetrical
flow about the axis of rotation results; such flows
will be examined by obtaining numerical solutions
of the Navier-Stokes equations. In contrast to the
flows considered in Part 1, solutions will be obtained
for a series of flows which have a rigid surface. The
presence of this lid makes the physical system more
symmetrical.

The purpose of this paper is to examine the possible
species of axisymmetric flow, and the accuracy of the
numerical technique employed. For the latter purpose,
the equations are solved for a flow which has been
examined experimentally by Bowden and Eden (1965).

In certain instances, some axisymmetric flows may
be determined mainly by frictional forces and heat con-
duction (as in the so-called lower symmetric regime),
whereas in other cases, flows tend to be more convec-
tively determined (as in the upper symmetric regime).
To examine the flows under these various types of
physical processes, the 5 flows taken cover a wide range
of values in the Rossby-Taylor diagram. Axisymmetric
flow can occur for numerous parameter combinations.
In this study, only the rotation rate and temperature
differential are varied; the geometry and physical con-
stants remain unaltered throughout.

2. A comparative experiment

A solution was made for a flow, Al of Table 1, for
which observational evidence exists. Starting from a
typical initial state, described in Part 1, integrations
with grids of 11, 21 and 41 points in each direction
produced steady state flows whose integrals are shown
in Fig. 1. These integrals appear to converge to values
approximately equal to those given by the 41 grid point
scheme, The values of Ej:E,=0.9497, ¢,=0.9406 and
€= ~—0.9319 indicate the degree of steadiness, for they
are within 1 per cent of balancing. The fluid takes ap-
proximately the same length of real time, 10 min, to
achieve steadiness for all grid systems.

Similarly balanced are the Nusselt numbers of the
inner cylinder, Nu(a)=6.3273, and the outer cylinder
Nu(b)=6.3739, with a trend value of 6.35 indicated
for their mean, Ni. These values fall short of the esti-
mates of N1 given by the 11 and 21 grid point solutions,
The experimental data of Bowden and Eden (1965)
provides an estimate of the actual Nusselt number for
flow Al. Allowing for a slight difference in the width
between cylinders, b—a, the fluid depth d, temperature
differential AT, and for a possible 5 per cent systematic
error in observation, the experimental Nusselt number
lies within the range of 6.74:0.4. This value agrees
with the calculated one,

The close similarity between the detailed structure
of the temperature contours of computation and ob-
servation may be seen from Fig, 2. The observations
were made for 3 positions, i.e., at the center and 0.65
cm on either side of it, at heights of 2=0, 1,2, + - -10 cm,
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TABLE 1. Structure of cases computed. Cases A3 and B2 are discussed in Part 1.

Physical Surface Number of grid AT Q
Case system condition intervals in 7, 2 (°C) (rad sec™) N 5
Al BE Fixed 4040 6.0 0.000 — —
A2 FH Fixed 4060 9.0 0.700 2.863 4.079 X105
A3 FH Free 40X 80 29.0 1.342 2.510 1.500X 108
B1 FH Fixed 4040 2.3 1.100 0.296 1.010X108
B2 FH Free 4080 29.0 2.125 1.001 3.759 X108
C1 FH Fixed 4040 1.2 0.500 0.748 2.0803< 105
C2 FH Fixed 40}40 0.1 0.350 0.127 1.020< 105
D1 FH Fixed 4040 0.2 1.100 0.026 1.010X10¢
System BE: cm, b=5 cm, d=10 cm, »=0.941X10"2 cm™ sec™?, x=1.420X 108 cm? sec,

a

$=2.380X10~ (°C)™, T'=23C, ms=06.58.
System FH: @

8

UL

050X 10~ (°C)1, T=20C, ms=".19.

so that we can only regard the observed field as being
a smoothed, interpolated interpretation of the true
temperature field. The observed isotherms do not con-
tain horizontal sections as do the computed contours;
in general, they appear to slope up toward the outer
cylinder. However, if the interior computed field is
smoothed in the same way as the observations have
been, then there is a general agreement between the
two. If we divide the height into 8 levels, the correspond-
ing isotherms all lie within corresponding sections. This
is more clearly illustrated in Fig, 3, where the tempera-
ture is graphed as a function of height for the central

3
2
3.48 cm, b=6.02 cm, d=35 cm, »=1.008X1072 sec?, x=1.420 X103 cm? sec,
2

plane r=(a+b)/2. The temperature converges toward
the 41 grid point solution and the disagreement with
the observed field is independent of resolution.

Flow structure. Fig. 4 contains the details of the steady
state flow field of case Al. The flow takes place in the
vertical plane only and is confined to narrow regions at
the extremities of the fluid. The fluid exhibits strong
upward and downward flow at the outer (hot) and
inner (cold) cylinders, respectively, but the cross flows
are not so intense. There appears to be little or no
motion within the central core of the fluid. Although
the fields possess a degree of symmetry, the maximum
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Fi1e. 1. Steady state integrals, derived from solutions which were obtained with 10, 20 and 40 grid
spaces in each dimension, demonstrate the convergence of the solutions with increasing resolution for
flow Al (2=0). For an explanation of the integral notation refer to Part 1.
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F16. 2. A comparison of temperature distributions between the calculated values on the left and those observed by
Bowden and Eden (1965). The dimensionless radial coordinate, '= (r—a)/(b—a), measures distance from the inner
(cold) cylinder at the left of each diagram, to the outer cylinder.

stream function occurs near the outer cylinder and the
maximum vorticity near the inner cylinder, both close
to the z/d=0.5 height. The vorticity field displays well
formed boundary layers on both cylinder walls, but has
nothing comparable on the horizontal surfaces; away
from the side walls the vorticity is negligible. Elder
(1965) has examined the flow between two heated verti-
cal plates, a system equivalent to an annulus of zero
curvature. His detailed observations of the temperature
and flow fields display precisely the same features as
those of the computations of case Al.

The flow in case Al can be considered as being es-
sentially the interaction of two thermal boundary layers,
oneon the outer cylinder, the other on the inner cylinder.
The flow on each cylinder wall resembles that near an
isolated vertical plate except that the influence of the
one layer inhibits the vertical extent of the other layer

beyond the central region z/d=0.5. In an isolated ther-
mal boundary layer on a hot wall, the flow would be
upward together with an entrainment of fluid from the
interior. However, in the annulus, the entrainment re-
quirements cannot be satisfied for both walls in the
same way as they could be for isolated walls. The
mutual interaction of the layers limits entrainment into
the hot (outer) layer to the lower half of the wall and
into the cold layer only in the upper half, making the
central region the point of maximum growth of the
boundary layers. The entrainment into one layer from
the other occurs more or less by horizontal flow, as the
streamlines of Fig. 4(A1) indicate. Furthermore, this
cross flow tends to be isothermal and is associated with
the horizontal configuration of the isotherms near the
r=(a+b)/2 plane.
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Analysis of the individual terms forming the tempera-
ture field [Fig. 5(case A1)] confirms that the interior
flow is isothermal, conductive transfer being negligible
except in the boundary layers. The constituent terms of
the vorticity equation (Fig. 6) indicate that a balancing
of viscous and buoyancy forces produces the motion of
all regions, the nonlinear terms being negligible. With
a knowledge of this balance, consider the motion in the
central core region. From the fact that the mutual inter-
action of the boundary layers inhibits entrainment and
further growth of the layers, we expect the radial velo-
city v to be zero. The computations show this to be so.
Then the continuity equation gives a vertical velocity
w=w(r) and the steady state equations take the form:

§-= —w, (1)
ﬂgATor:V(l/r(r;)r)n (2)
w0, =k[0,.+1/r(r0,),], 3

for the central core. Eliminating the r derivatives of 8
yields the equation

Ky 1
o T (en) ]
BgATL\r rr

which on being differentiated throughout by z gives
6.,=0. This argument, derived from Elder (1965), in-
dicates that the central region of the fluid has a linear
temperature profile, a feature already noted.

@)

3. Solutions of a set of flows with a rigid surface

To understand the annulus flow system, we have to
know what types of flow are possible and under which
physical processes the types exist, that is, whether the
diffusion or convection processes predominate for a
given flow type. The series of five rigid surface flow
solutions to be described, provided a sufficient coverage
of the whole range of physical processes. The cases will
be examined separately, starting with flows controlled
by diffusion and proceeding toward more convective
flows, and then their relative implications will be
discussed.

Case D1. Conduction and viscous forces essentially
determine the first flow that we consider, namely D1.
Weak heating and strong rotation rates (see Table 1)
place this flow within the lower symmetric regime.

The stream function contours [ Fig. 4 (case D1)]form
a meridional flow composed of a large direct (Hadley)
cell together with a smaller secondary cell system. The
latter system is made up of 2 cells, each associated with
one of the boundary layers on the inner and outer
cylinders. Both cells penetrate the interior of the fluid
where a very weak intermediate third cell also exists.
The secondary cells, or countercurrents as Robinson
(1959) terms them, strengthen the mass transport near
the wall but weaken it elsewhere. The maximum value of
the stream function arises near the center the of bound-
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F1c. 3. A comparison for flow Al of the vertical temperature
distributions at ’=4%, as given by the observations of Bowden
and Eden (1965) and by the computations with 10, 20 and 40
grid spaces (V) in each dimension. Note that computational-
observational disagreement is independent of resolution.

ary layer on the outer cylinder, this being the position
of strongest vertical flow. The flow field is asymmetric
in the vertical plane.

The temperature field deviates only slightly from the
conductive solution. The effect of motion upon the tem-
perature field is most apparent in a vertical temperature
profile (Fig. 8). In the radial profiles (Fig. 9), the tem-
perature field is linear at z/d=0.25 but at z/d=0.75
the solution is not so purely conductive. The tempera-
ture component balance [Fig. 5(case D1)] exhibits a
wave number 2 variation in the convective terms at
z/d=%. This reflects the large countercurrent contri-
butions to the heat transport.

The zonal flow consists of westerly flow in the upper
half of the annulus and easterly flow in the lower half.
The line of separation, #=0, inclines up toward the
inner (cold) cylinder with its mean height slightly below
z/d=%. The maximum westerly just exceeds the maxi-
mum easterly, but both occur off-center, nearer the
inner cylinder at a nondimensional distance of 7»'=%.
Small but identifiable Ekman layers exist on the lid
and base.

A typical balance of vorticity equation components
[Fig. 6(case D1)7] reveals that the interior of the fluid
is essentially in a geostrophic balance despite the vis-
cous-conductive nature of this lower symmetric regime
flow. However, the extent of the geostrophic region is
small compared to similar regions in other flows. The
vorticity boundary layers exist under a balance of fric-
tion and buoyancy forces. The contribution of con-
vective transport to the vorticity balance and zonal
velocity balance (Fig. 7) is negligible. The components
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Fi16. 4. Steady state contours of, from the left, stream function, normalized
temperature and zonal velocity for lows D1, C2, C1, B1, A2 and Al with a rigid
upper surface (see Table 1). For flow Al (2=0), the vorticity contours replace
the zonal isotachs. Streamline arrows indicate the meridional flow direction

and a positive zonal velocity denotes a westerly flow, all in cm sec™®. Extreme
values of zonal velocity and stream function are marked.
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F16. 5. Representative radial distributions of the components contributing to the balance of terms
in the normalized temperature equation for 4 flows at height z/d =%. For the meaning of the terms con-

sult Eq. (8) of Part 1.

of the zonal velocity equation exhibit a balance be-
tween the Coriolis term —2Qv and the friction term
»V2y4 throughout the fluid. This indicates that the meri-
dional flow is mainly frictionally driven.

Case C2. A low rotation rate places case C2 higher
up on the convective scale compared to flow D1, and
the flow lies in the mid-symmetrical regime.

The meridional flow forms a direct cell and occupies
broad boundary layer regions of the fluid as a con-
sequence of the low rotation rate. The structure of the
interior secondary flow is less pronounced than that

of other cases. The customary two cells, such as are
present in D1, have fused into one for the flow of C2.
The increasing convective influence is clearly marked
in the temperature field as shown in Figs. 4, 8 and 9.
Although the conduction solution predominates in the
central core of the fluid, the isotherms are convected
by the meridional flow in the base and lid regions where
there is a marked concentration of the isotherms. A
Nusselt number of 1.40 for this flow indicates the effect
of convective heat transport upon the basic conduction
Nusselt number of 1.0. The Nusselt number of 1.15

VoLUME 24
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FiG. 6. Representative radial distributions of the components contributing to the balance of terms
in the vorticity equation (7) of Part 1, for various flows at mid-height. The geostrophic nature and

extent of the interior are illustrated.

for the previous case, D1, indicates the essentially
conductive nature of that flow, The Nusselt number
determines quantitatively the position of the flow on
the convective scale.

The zonal velocity contours of C2 display a more
rounded shape and have larger magnitudes than those
of D1. Furthermore, the extreme values, both occuring
near ¥’ =%, are more centrally located. The deep Ekman
layers are in keeping with the low rotation rate.

Case C1. The flow of case C1 is made predominately
convective by a temperature difference that is relatively

large when compared to those of flows dominated by
conduction.

The stream functions of cases C1 and D1 are of
similar magnitude. Thus, as the flow of case C1 has
the higher temperature difference AT and the lower
rotation rate 2, these parameters must produce op-
posite effects, i.e., the temperature gradient induces
and the rotation inhibits meridional mass transfer. Al-
though of convective origin, the flow of C1 has the
same basic structure as the conductive flow D1; only
the lesser details differ. In particular, the boundary
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F16. 7. Representative radial dlstrlbutlons of the components contributing to the balance of terms in the
zonal velocity equation (9) of Part 1, for various flows at height z/d=1.

layer streamlines are more rounded at the corners,
suggesting that the horizontal and vertical boundary
layers interact more strongly in convective flows. The
momentum boundary layers broaden out as the fluid
progresses up the outer cylinder and down the inner
cylinder, in keeping with the localized concentration
of the isotherms into definitive thermal boundary
layers. Two secondary cells exist again, this time in a
strong, precise form and exhibiting asymmetry about
the line z/d=4%. This last feature is associated with the
asymmetric structure of the thermal boundary layers.

1.0

—_—
N

0.5+

0.0

0.0

Fic. 8. Profiles of the vertical distribution of normalized tem-
perature at z/d=4% for the rigid surface flows.

Brevity of extent distinguishes the thermal boundary
layers, for both layers form along only one-fourth of
each'cylinder. Temperature profiles [Fig. 9(case C1)]
show_the existence of separate interior and boundary
layer,regions in the radial direction. The interior iso-
therms display a determined linearity in their general
sloping up toward the inner cylinder. A large region of
fluid, near the lid, lies at almost constant temperature
between the 0.9 and 1.0 isotherms.

As in all other rigid surface flows, the zonal velocity
has extreme values of almost equal magnitude. How-
ever, the maximum westerly occurs near »'=% while
the easterly maximum is positioned near »'=3.

Case Bl. The external parameters place this flow
within what observations indicate is the wave regime
of free surface flows. However, the presence of a lid
and absence of a stability criterion for viscous-conduc-
tive flows makes it uncertain whether flow Bl lies in
the wave regime or not. All that can be said is that a
steady state axisymmetric solution (Fig. 4) exists for
the parameter values of B1.

The parameters of case Bl resemble those of D1 in
all respects apart from the temperature difference which
is 10 times greater for flow B1. In direct consequence,
the meridional velocities are approximately 10 times
greater for Bl than D1. All the flow features are es-
sentially the same as those of C1 so that they require
no separate description. Although the same types of
physical processes are involved in flows B1 and D1 as
shown in Figs. 5, 6 and 7, i.e., both flows have geo-
strophically balanced interior flows, the extent of such
similar regions varies from flow to flow.

Case A2. The final Case, A2, in this comparative series
lies in the upper symmetric regime because of its rela-
tively large temperature difference. This flow also com-
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pares with the free surface flows of the same regime
considered in Part 1. The superiority of the rigid surface
system as a mass and heat transporter is made evident
by such a comparison.

The secondary cell structure of case A2 differs from
those of the other flows. As a type, it falls between that
of the convective case Al (2=0) and that of the general
pattern, such as occurs in B1. Although two small in-
dividual wall cells may exist, a single cell system is the
predominant feature of the secondary flow.

The isotherm contours contain the most interesting
aspect of the A2 flow, namely the vanishing of the
radial temperature gradient 6, (Figs. 4 and 9). The
S-shaped contours, containing this inflection, form sepa-
rate regions between the boundary layers and the in-

1.0

1.0

Fi1c. 9. Profiles of the radial distribution of temperature for
the rigid surface flows at levels z/d=1 and §. Gradients lie be-
tween that of the conductive flow D1 and the nonrotating con-
vective flow Al.
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F16. 10. A composite of the isotherms and interior streamlines
of flow A2 illustrating the isothermai nature of the interior flow
and the association of thermal and viscous boundary layers.

terior proper. The viscous boundary layer being broader
than the thermal boundary layer frictionally drags the
interior fluid along, thereby producing the isotherm
inflections. A composite diagram of stream function and
temperature contours (Fig. 10) indicates that the secon-
dary cell system augments or coincides with the tem-
perature inflections; the essentially isothermal nature
of the interior flow is also apparent. The S-shape of
the isotherms means that heat is being conducted in
toward the flex point from both sides to compensate for
excessive convection.

The vorticity component balance shown in Fig.
6(case A2) also reflects the existence of three regions.
Apart from a normal (2£0) interior region in a buoy-
ancy-Coriolis (geostrophic) balance and boundary layers
in buoyancy-viscous balance, there is one area between
these two regions where the Coriolis and viscous terms
of the vorticity equation balance.
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TaABLE 2. Nusselt numbers and integration periods.

Approximate steady

state time
Nu (@) (b)
Case Nu(a) Nu(b) tendency Sec  Revolutions
D1 1.15 1.16 1.15 500 90
C2 1.36 1.42 1.40 1000 60
B1 3.52 3.68 3.60 500 90
C1 3.94 3.90 3.93 1000 80
A2 8.24 8.40 8.32 400 60
Al 6.33 6.37 6.35 600 —
A3 7.98 8.30 8.14 300 60
B2 5.00 5.35 5.18 330 110

a. Comparison of flow properties
1. Component balances.

All the flows which we have considered (20) display
the same basic east-west pattern of zonal flowin conically
shaped regions, separated just below the 2'=%} level
by the #=0 contour. Typical distributions of the com-
ponent terms of the steady state zonal velocity equation
shown in Fig. 7, have interior regions that are always in
a Coriolis-zonal velocity friction term balance. However,
the size of these interior regions diminishes for the
strongly viscous flows of the lower symmetric regime.
The term expressing the meridional convection of zonal
velocity makes little contribution to the balance of the
interior but in upper symmetric regime cases, such as
A2, it constitutes a large part of the friction layer
balance, particularly on the inner cylinder. Generally,
however, the zonal velocity boundary layers are in a
Coriolis-zonal velocity friction balance.

The component balances of the temperature equation
(Fig. 5) reveal the comparative role of conduction in
the various flows. In the lower symmetric regime, the
flow D1 transports heat by convection with conduction
playing an equally large role throughout the fluid.
Significant conduction contributions are confined to
well defined thermal boundary layers in other flows.
Furthermore, in the upper symmetric regime, there
appears to be little heat transport by either convection
or conduction in the interior. The thermal boundary
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layers of Case Al (2=0) are uniformly formed and
radial convection and conduction match convection in
the vertical.

2. Heat transfer.

As it is not practical to present all the energy integral
diagrams, we restrict consideration to the Nusselt num-
ber integrals. The annulus is essentially a heat trans-
porting mechanism and the Nusselt number forms the
most tangible measure of the dependence of the system
upon the parameters. The values of the parameters m,
and w5 have already been seen to determine the type
of flow produced. The values of the Nusselt numbers
of the various solutions are presented in Table 2.

For a non-rotating annulus, the Nusselt number has
been observed to be proportional to (AT)#[e.g., Bowden
and Eden (1965)]. Using this fact as a guide, a plot of
Na(AT)~* against the Rossby number 4 for the 5 rigid
lid flows yields a straight line on the logarithmic scale
of Fig. 11. As the only parameters varied in the in-
vestigation are AT and Q, the line has the equation

AT047 AT 3 Q2 0.03

EZ.6(——) (——> .

QO.M Q AT

This relationship cannot be regarded as anything more
than a convenient expression as it is not based on any
physical deductions. In the upper symmetric regime
the second parenthesis in (5) is equal to unity so that
Ni behaves as (AT/Q)%.

For the two free surface experiments N behaves as
Q~', AT being constant for these experiments. The func-
tioning of annulus heat transport in accordance with
(AT/Q)} for rigid surface flows and with Q7 for free
surface flows is only a crude indication of the fluid be-
havior in view of the small number of solutions from
which the relationships were derived. If the relations
are meaningful, they infer that free surface flow is in-
hibited by rotation to double the power by which the
rigid surface flow is inhibited.
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Fic. 11. The logarithmic variation of Nusselt number N with the Rossby number,
“my= (gBdAT)/[Q2(b—a)?], for 5 fixed surface flows (2720).
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Fic. 12 a, b. The integral quantities (see Part 1) of D1 are shown as functions of time. The time scale is
composed of 3 separate stages and the grid resolution is doubled at 2700 sec.

3. Steady state requirements.

The flows considered require the equivalent in time
of 60 to 100 revolutions of the annulus to achieve a
steady state as shown in Table 2. In terms of real time,
the flows of the lower symmetric regime take the longest
time to reach steadiness and the upper regime flows take
the shortest. The two free surface flows require roughly
the same amount of time despite the difference in ro-
tation rates.

Fig. 12 shows what happens when the solution with a
particular grid is used as the initial state for an inte-

gration with double the resolution. The primary solution
for the 20X 20 grid is reasonably steady after 500 sec,
but the integration is further developed to 2700 sec,
by which time diffusive mechanisms have produced
Nusselt numbers differing only in the fifth digit. At
this time, the 20X20 solution is linearly interpolated
onto a 40X40 grid to commence integration with the
increased resolution. The kinetic integrals all jump in
magnitude but become constant again after 20 sec. The
temperature integrals, however, take about 500 sec to
return to steadiness; this is the same length of time
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as the initial grid integration required so there is little
advantage to be derived from performing integrations
in the above manner.

4. Discussion and conclusions

The resemblance of the cases considered to the con-
ductive type D1 and to the convective type A1(Q=0)
indicates that flows may be regarded as being com-
binations of these two basic types. The radial tempera-
ture distributions support this approach because the
profiles (Fig. 9) progress in structure from the linear
profile of D1 to the S-shaped profile of Al, Thus, the
inflections that occur in the temperature contours near
the boundary layers in case A2 are essentially a feature
of the non-rotating flow Al. The meridional flow struc-
tures vary from the large two cell secondary flows of D1,
through diverse cell sizes, to the single cell interior
structure of Al (and A2).

The mutual interaction of the thermal boundary
layers primarily determines the temperature field of a
particular flow. The requirement that the isotherms of
one thermal boundary layer join up with those of the
other layer limits the extent of the layers along the
walls and produces an interior distribution; case Al
with its zero rotation demonstrates this. The rotation
of the annulus effects a sloping of the interior contours
and reduces the size of the thermal boundary layers.

The lack of extensive observation allows us to make
only a qualitative examination of the solutions. The
data of Bowden and Eden agree with the sloping of
isotherms by rotation and with the composition of the
zonal velocity field. The observed zonal velocity extrema
are more centrally located than those of the calculations,
but the positioning of the #=0 isotach separating east-
west flow is the same.

The only theoretical work on flow structure that can
be applied to the solutions is the analysis of Robinson
(1959). His theory is valid for flows with a temperature
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field determined predominately by conduction. Case D1
satisfies this criterion and is open to comparison, par-
ticularly as it lies within the convergence requirements
of the analysis. Theory predicts the direct meridional
circulation and two symmetric secondary cells associated
with the sidewall boundary layers. The limitations of
the analysis could explain the symmetry of cells which
are asymmetric in the numerical solution. Robinson’s
conclusion that the non-linear convection terms in the
heat equation significantly control the development of
the fields, while the non-linear momentum convection
is negligible, has already been noted in Figs. 5 and 6
for case D1. The analytical result that at low rotation
rates the boundary layer countercurrents may not be
observable is true in case C2. The bow shaped distortion
of the boundary layer streamlines, as obtained by Robin-
son, cannot be discerned in the numerical solutions.

According to theory, the sidewall countercurrents
owe their existence to the interaction of the sidewall
boundary layers and the rotationally constrained flow
of the Ekman boundary layers on the base and lid.
The mechanics of such a system are not obvious. The
secondary cells are probably necessary to control the
width of the sidewall layers so that they can flow
smoothly into the Ekman layers.
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